Difference between revisions of "Convergence of gamma function at positive values"
From timescalewiki
(Created page with "==Theorem== If $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$. ==Proof== ==References== Category:Theorem Category:Unprov...") |
|||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | If $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$. | + | If $\mathbb{T}$ be a [[time scale]] and $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$, where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]]. |
==Proof== | ==Proof== |
Revision as of 17:52, 15 January 2023
Theorem
If $\mathbb{T}$ be a time scale and $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$, where $\Gamma_{\mathbb{T}}$ denotes the gamma function.