Difference between revisions of "Convergence of gamma function at positive values"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$. ==Proof== ==References== Category:Theorem Category:Unprov...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
If $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$.
+
If $\mathbb{T}$ be a [[time scale]] and $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$, where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]].
  
 
==Proof==
 
==Proof==

Revision as of 17:52, 15 January 2023

Theorem

If $\mathbb{T}$ be a time scale and $s \in \mathbb{T}^+$, then $\Gamma_{\mathbb{T}}(x;s)$ converges for any $x \in \mathbb{R}^+$, where $\Gamma_{\mathbb{T}}$ denotes the gamma function.

Proof

References