Difference between revisions of "Mozyrska-Torres logarithm"
From timescalewiki
(→Properties) |
|||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
[[Delta derivative of Mozyrska-Torres logarithm]]<br /> | [[Delta derivative of Mozyrska-Torres logarithm]]<br /> | ||
− | + | [[Mozyrska-Torres logarithm at 1]]<br /> | |
*$L_{\mathbb{R}}(t)=\log(t)$ | *$L_{\mathbb{R}}(t)=\log(t)$ | ||
*$L_{\mathbb{T}}(\cdot)$ is increasing and continuous | *$L_{\mathbb{T}}(\cdot)$ is increasing and continuous |
Revision as of 20:56, 17 September 2016
Let $\mathbb{T}$ be a time scale. For $t \in \mathbb{T} \cap (0,\infty)$, define $$L_{\mathbb{T}}(t) = \displaystyle\int_1^t \dfrac{1}{\tau} \Delta \tau.$$
Properties
Delta derivative of Mozyrska-Torres logarithm
Mozyrska-Torres logarithm at 1
- $L_{\mathbb{R}}(t)=\log(t)$
- $L_{\mathbb{T}}(\cdot)$ is increasing and continuous
- $L_{\mathbb{T}}(\sigma(t))=L_{\mathbb{T}}(t)+\mu(t)L_{\mathbb{T}}^{\Delta}(t)=L_{\mathbb{T}}(t)+\dfrac{\mu(t)}{t}$
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next): page 1