Mozyrska-Torres logarithm at 1

From timescalewiki
Jump to: navigation, search

Theorem

Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. Then $L_{\mathbb{T}}(1)=0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)