Difference between revisions of "Delta gk"

From timescalewiki
Jump to: navigation, search
Line 26: Line 26:
 
[[Delta hk]]
 
[[Delta hk]]
  
{{:Delta special functions footer}}
+
<center>{{:Delta special functions footer}}</center>

Revision as of 22:31, 2 June 2016

Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence $$\left\{ \begin{array}{ll} g_0(t,s)=1 \\ g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. \end{array} \right.$$


Properties

Theorem

Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then for all $0 \leq n \leq k-1$, $$g_k(\rho^n(t),t)=0,$$ where $g_n$ denotes the $g_k$ monomial and $\rho^k$ denotes compositions of the backward jump.

Proof

References

Theorem

Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then the following formula holds: $$h_k(t,s;\mathbb{T})=(-1)^kg_k(s,t;\mathbb{T}),$$ where $h_k$ denotes the delta hk and $g_k$ denotes the delta gk.

Proof

References

Examples

Delta $g_k$ Monomials
$\mathbb{T}=$ $g_k(t,t_0)=$
$\mathbb{R}$ $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$
$\mathbb{Z}$ $g_k(t,t_0)= $
$h\mathbb{Z}$ $g_k(t,t_0)=$
$\mathbb{Z}^2$ $g_k(t,t_0)=$
$\overline{q^{\mathbb{Z}}}, q > 1$ $g_k(t,t_0)=$
$\overline{q^{\mathbb{Z}}}, q < 1$ $g_k(t,t_0)=$
$\mathbb{H}$ $g_k(t,t_0)=$

See also

Delta hk

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$