Difference between revisions of "Delta Hölder inequality"

From timescalewiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
__NOTOC__
<strong>Theorem:</strong> Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have
+
==Theorem==
 +
Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have
 
$$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$
 
$$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$
 
where $p>1$ and $q = \dfrac{p}{p-1}$.
 
where $p>1$ and $q = \dfrac{p}{p-1}$.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
 
</div>
 
  
 
==References==
 
==References==
[http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey]
+
{{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=findme|next=findme}}: Theorem 3.1
 +
 
 +
{{:Delta inequalities footer}}
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 00:36, 15 September 2016

Theorem

Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ where $p>1$ and $q = \dfrac{p}{p-1}$.

Proof

References

Ravi AgarwalMartin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 3.1

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger