Difference between revisions of "Delta cosh"

From timescalewiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $p \in C_{rd}$ and $-\mu p^2$ be a [[regressive function]]. Then the $\Delta$-hyperbolic cosine function is defined by
 
Let $p \in C_{rd}$ and $-\mu p^2$ be a [[regressive function]]. Then the $\Delta$-hyperbolic cosine function is defined by
 
$$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$
 
$$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Integercosh,a=0.6,s=0plot.png|Graph of $\cosh_{0.6}(t,0;\mathbb{Z})$.
 +
</gallery>
 +
</div>
 +
 
=Properties=
 
=Properties=
{{:Derivative of delta cosh}}
+
[[Derivative of delta cosh]]<br />
{{:Delta cosh minus delta sinh}}
+
[[Delta cosh minus delta sinh]]<br />
{{:Delta hyperbolic trigonometric second order dynamic equation}}
+
[[Delta hyperbolic trigonometric second order dynamic equation]]<br />
  
 
=Examples=
 
=Examples=
Line 35: Line 42:
 
|}
 
|}
  
{{:Delta special functions footer}}
+
<center>{{:Delta special functions footer}}</center>
 +
 
 +
[[Category:specialfunction]]
 +
[[Category:Definition]]

Latest revision as of 14:13, 28 January 2023

Let $p \in C_{rd}$ and $-\mu p^2$ be a regressive function. Then the $\Delta$-hyperbolic cosine function is defined by $$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$

Properties

Derivative of delta cosh
Delta cosh minus delta sinh
Delta hyperbolic trigonometric second order dynamic equation

Examples

Time Scale $\Delta$-$\cosh_1$ Functions
$\mathbb{T}=$ $\cosh_1(t,0)=$
$\mathbb{R}$ $\cosh_1(t,0)=\cosh(t)$
$\mathbb{Z}$
$h\mathbb{Z}$ $\cosh_1(t,0)=\dfrac{1}{2}\left( (1-h)^{\frac{t}{h}} + (1+h)^{\frac{t}{h}}\right) = \displaystyle\sum_{k=0}^{\infty} h_{2k}(t,0) $
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$