Difference between revisions of "Delta Gronwall inequality"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $y$ and $f$ be rd-continuous and $p$ be regressive_function | positive...") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | __NOTOC__ | |
− | + | ==Theorem== | |
+ | Let $y$ and $f$ be [[continuity | rd-continuous]] and $p$ be [[regressive_function | positively regressive]] and $p \geq 0$. If for all $t \in \mathbb{T}$ | ||
$$y(t) \leq f(t) + \displaystyle\int_a^t y(\tau) p(\tau) \Delta \tau,$$ | $$y(t) \leq f(t) + \displaystyle\int_a^t y(\tau) p(\tau) \Delta \tau,$$ | ||
then | then | ||
$$y(t) \leq f(t) + \displaystyle\int_a^t e_p(t,\sigma(\tau))f(\tau)p(\tau)\Delta \tau$$ | $$y(t) \leq f(t) + \displaystyle\int_a^t e_p(t,\sigma(\tau))f(\tau)p(\tau)\Delta \tau$$ | ||
for all $t \in \mathbb{T}$. | for all $t \in \mathbb{T}$. | ||
− | + | ||
− | + | ==Proof== | |
− | |||
− | |||
==References== | ==References== | ||
− | + | {{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=findme|next=findme}}: Theorem 5.6 | |
+ | |||
+ | {{:Delta inequalities footer}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:36, 15 September 2016
Theorem
Let $y$ and $f$ be rd-continuous and $p$ be positively regressive and $p \geq 0$. If for all $t \in \mathbb{T}$ $$y(t) \leq f(t) + \displaystyle\int_a^t y(\tau) p(\tau) \Delta \tau,$$ then $$y(t) \leq f(t) + \displaystyle\int_a^t e_p(t,\sigma(\tau))f(\tau)p(\tau)\Delta \tau$$ for all $t \in \mathbb{T}$.
Proof
References
Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 5.6
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |