Difference between revisions of "Unilateral Laplace transform"
From timescalewiki
(19 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | + | If $\mathbb{T}$ is a [[time_scale | time scale]], $s \in \mathbb{T}$, and $f$ is [[rd-continuous]], then we define the unilateral Laplace transform of $f$ about $s$ by the formula | |
− | $$\mathscr{L}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),s) \Delta t,$$ | + | $$\mathscr{L}_{\mathbb{T}}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),s) \Delta t,$$ |
− | + | for all $z$ for which the integral converges, where $\displaystyle\int \ldots \Delta t$ denotes the [[delta integral]], $e_{\ominus z}$ denotes a [[delta exponential]] whose subscript is the [[forward circle minus]] of the constant $z$, and $\sigma$ is the [[forward jump]]. | |
=Properties of Laplace Transforms= | =Properties of Laplace Transforms= | ||
− | + | [[Unilateral Laplace transform is a linear operator]]<br /> | |
− | + | [[Unilateral Laplace transform of delta derivative]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
=Table of Laplace transforms= | =Table of Laplace transforms= | ||
Line 140: | Line 72: | ||
=References= | =References= | ||
*{{PaperReference|The convolution on time scales|2007|Martin Bohner|author2=Gusein Sh. Guseinov|prev=|next=}}: (1.1) | *{{PaperReference|The convolution on time scales|2007|Martin Bohner|author2=Gusein Sh. Guseinov|prev=|next=}}: (1.1) | ||
− | * {{PaperReference|The gamma function on time scales|2013|Martin Bohner|author2=Başak Karpuz|prev=|next=Gamma function}}: Section 3 | + | *{{PaperReference|The gamma function on time scales|2013|Martin Bohner|author2=Başak Karpuz|prev=|next=Gamma function}}: Section 3 |
+ | |||
+ | [[Category:Definition]] |
Latest revision as of 15:21, 21 January 2023
If $\mathbb{T}$ is a time scale, $s \in \mathbb{T}$, and $f$ is rd-continuous, then we define the unilateral Laplace transform of $f$ about $s$ by the formula $$\mathscr{L}_{\mathbb{T}}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),s) \Delta t,$$ for all $z$ for which the integral converges, where $\displaystyle\int \ldots \Delta t$ denotes the delta integral, $e_{\ominus z}$ denotes a delta exponential whose subscript is the forward circle minus of the constant $z$, and $\sigma$ is the forward jump.
Properties of Laplace Transforms
Unilateral Laplace transform is a linear operator
Unilateral Laplace transform of delta derivative
Table of Laplace transforms
$\mathbb{T}=$ | Unilateral Laplace transform |
$\mathbb{R}$ | $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_s^{\infty} f(\tau) e^{-z\tau} \mathrm{d}\tau$ |
$\mathbb{Z}$ | |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
$f(t;s)$ | $\mathscr{L}\{f(\cdot;s)\}(z)$ |
$e_{\alpha}(t;s)$ | $\dfrac{1}{z-\alpha}$ |
$h_n(t;s)$ | $\dfrac{1}{z^{n+1}}$ |
$\sinh_{\alpha}(t;s)$ | $\dfrac{\alpha}{z^2-\alpha^2}$ |
$\cosh_{\alpha}(t;s)$ | $\dfrac{z}{z^2-\alpha^2}$ |
$\sin_{\alpha}(t;s)$ | $\dfrac{\alpha}{z^2+\alpha^2}$ |
$\cos_{\alpha}(t;s)$ | $\dfrac{z}{z^2+\alpha^2}$ |
See also
Bilateral Laplace transform
Unilateral convolution
References
- Martin Bohner and Gusein Sh. Guseinov: The convolution on time scales (2007): (1.1)
- Martin Bohner and Başak Karpuz: The gamma function on time scales (2013)... (next): Section 3