Difference between revisions of "Delta Cauchy-Schwarz inequality"

From timescalewiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
==Theorem==
 
==Theorem==
 
Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have
 
Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have
Line 9: Line 10:
  
 
{{:Delta inequalities footer}}
 
{{:Delta inequalities footer}}
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 00:36, 15 September 2016

Theorem

Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$

Proof

References

Ravi AgarwalMartin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 3.2

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger