Difference between revisions of "Delta sinh"

From timescalewiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 9: Line 9:
  
 
=Properties=
 
=Properties=
{{:Derivative of delta sinh}}
+
[[Derivative of delta sinh]]<br />
{{:Derivative of delta cosh}}
+
[[Derivative of delta cosh]]<br />
{{:Delta cosh minus delta sinh}}
+
[[Delta cosh minus delta sinh]]<br />
{{:Delta hyperbolic trigonometric second order dynamic equation}}
+
[[Delta hyperbolic trigonometric second order dynamic equation]]<br />
  
 
<center>{{:Delta special functions footer}}</center>
 
<center>{{:Delta special functions footer}}</center>
 +
 +
[[Category:specialfunction]]
 +
[[Category:Definition]]

Latest revision as of 14:13, 28 January 2023

Let $p$ and $-\mu p^2$ be regressive functions. Then the $\Delta$ hyperbolic sine function is defined by $$\sinh_p(t,s) = \dfrac{e_p(t,s)-e_{-p}(t,s)}{2}.$$

Properties

Derivative of delta sinh
Derivative of delta cosh
Delta cosh minus delta sinh
Delta hyperbolic trigonometric second order dynamic equation

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$