Difference between revisions of "Delta gk"

From timescalewiki
Jump to: navigation, search
 
(4 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
File:Integergk,k=2,s=0plot.png|Graph of $g_2(t,0;\mathbb{Z})$.
 
File:Integergk,k=2,s=0plot.png|Graph of $g_2(t,0;\mathbb{Z})$.
 
File:Integergk,k=3,s=0plot.png|Graph of $g_3(t,0;\mathbb{Z})$.
 
File:Integergk,k=3,s=0plot.png|Graph of $g_3(t,0;\mathbb{Z})$.
File:Integergk,k=4,s=0plot.png|Graph of $g_4(t,;\mathbb{Z})$.
+
File:Integergk,k=4,s=0plot.png|Graph of $g_4(t,0;\mathbb{Z})$.
 +
File:Integergk,k=5,s=0plot.png|Graph of $g_5(t,0;\mathbb{Z})$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
Line 16: Line 17:
  
 
=Properties=
 
=Properties=
{{:Zeros of delta gk}}
+
[[Zeros of delta gk]]<br />
{{:Relationship between delta hk and delta gk}}
+
[[Relationship between delta hk and delta gk]]<br />
  
 
=Examples=
 
=Examples=
Line 25: Line 26:
 
[[Delta hk]]
 
[[Delta hk]]
  
{{:Delta special functions footer}}
+
<center>{{:Delta special functions footer}}</center>
 +
 
 +
[[Category:specialfunction]]
 +
[[Category:Definition]]

Latest revision as of 14:13, 28 January 2023

Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence $$\left\{ \begin{array}{ll} g_0(t,s)=1 \\ g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. \end{array} \right.$$


Properties

Zeros of delta gk
Relationship between delta hk and delta gk

Examples

Delta $g_k$ Monomials
$\mathbb{T}=$ $g_k(t,t_0)=$
$\mathbb{R}$ $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$
$\mathbb{Z}$ $g_k(t,t_0)= $
$h\mathbb{Z}$ $g_k(t,t_0)=$
$\mathbb{Z}^2$ $g_k(t,t_0)=$
$\overline{q^{\mathbb{Z}}}, q > 1$ $g_k(t,t_0)=$
$\overline{q^{\mathbb{Z}}}, q < 1$ $g_k(t,t_0)=$
$\mathbb{H}$ $g_k(t,t_0)=$

See also

Delta hk

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$