Difference between revisions of "Real numbers"

From timescalewiki
Jump to: navigation, search
Line 17: Line 17:
 
|-
 
|-
 
|[[Delta derivative | $\Delta$-derivative]]
 
|[[Delta derivative | $\Delta$-derivative]]
|$$f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$$
+
|$f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$
 
|-
 
|-
 
|[[Nabla derivative | $\nabla$-derivative]]
 
|[[Nabla derivative | $\nabla$-derivative]]
|$$f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$$
+
|$f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$
 
|-
 
|-
 
|[[Delta integral | $\Delta$-integral]]
 
|[[Delta integral | $\Delta$-integral]]
| $$\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$$
+
| $\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$
 
|-
 
|-
 
|[[Nabla derivative | $\nabla$-derivative]]
 
|[[Nabla derivative | $\nabla$-derivative]]
|$$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$$
+
|$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$
 
|-
 
|-
 
|[[Delta exponential | $e_p(t,s)=$]]  
 
|[[Delta exponential | $e_p(t,s)=$]]  
Line 33: Line 33:
 
|-
 
|-
 
|[[Nabla exponential | $\hat{e}_p(t,s)=$]]
 
|[[Nabla exponential | $\hat{e}_p(t,s)=$]]
|$$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
+
|$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
 
([[Derivation of nabla exponential T=R|derivation]])
 
([[Derivation of nabla exponential T=R|derivation]])
 
|-
 
|-
Line 56: Line 56:
 
|-
 
|-
 
|[[Laplace transform]]
 
|[[Laplace transform]]
|$$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$$
+
|$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
 
|-
 
|-
 
|[[Gamma function]]
 
|[[Gamma function]]
|$$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$$
+
|$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$
 
|-
 
|-
 
|}
 
|}

Revision as of 19:38, 29 April 2015

The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the clasical derivative and the integrals reduce to the Riemann integral.

$\mathbb{T}=\mathbb{R}$
Forward jump: $\sigma(t)=t$
Forward graininess: $\mu(t)=0$
Backward jump: $\rho(t)=t$
Backward graininess: $\nu(t)=0$
$\Delta$-derivative $f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$
$\nabla$-derivative $f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$
$\Delta$-integral $\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$
$\nabla$-derivative $\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$
$e_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\hat{e}_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{sin}_p(t,s)=$ $\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{\sin}_1(t,0)$ $\sin(t)$

(derivation)

$\mathrm{\cos}_p(t,s)$ $\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{\cos}_1(t,0)$ $\cos(t)$

(derivation)

Hilger circle
Laplace transform $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
Gamma function $\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$