Difference between revisions of "Delta Bernoulli inequality"
From timescalewiki
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | __NOTOC__ | |
− | + | ==Theorem== | |
− | $$e_{\alpha} \geq 1 + \alpha(t-s)$$ | + | Let $\mathbb{T}$ be a [[time scale]] and $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then for all $t,s \in \mathbb{T}$ |
− | + | $$e_{\alpha} \geq 1 + \alpha(t-s),$$ | |
− | + | where $e_{\alpha}$ denotes the [[delta exponential]]. | |
− | + | ||
− | + | ==Proof== | |
− | |||
==References== | ==References== | ||
− | + | {{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=findme|next=findme}}: Theorem 5.5 | |
+ | |||
+ | {{:Delta inequalities footer}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 15:45, 21 January 2023
Theorem
Let $\mathbb{T}$ be a time scale and $\alpha \in \mathbb{R}$ be a positively regressive constant. Then for all $t,s \in \mathbb{T}$ $$e_{\alpha} \geq 1 + \alpha(t-s),$$ where $e_{\alpha}$ denotes the delta exponential.
Proof
References
Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 5.5
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |