Difference between revisions of "Bracket factorial"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. Define the bracket factorial by $$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll} 1&; n=0 \\ \displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &;...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 5: | Line 5: | ||
\end{array} \right.,$$ | \end{array} \right.,$$ | ||
where $[j]_{\mathbb{T}}$ denotes a [[bracket number]]. | where $[j]_{\mathbb{T}}$ denotes a [[bracket number]]. | ||
+ | |||
+ | =Properties= | ||
+ | [[Gamma function on certain time scales at bracket number equals bracket factorial]] | ||
=See also= | =See also= | ||
Line 10: | Line 13: | ||
=References= | =References= | ||
+ | |||
+ | [[Category:Definition]] |
Latest revision as of 12:53, 16 January 2023
Let $\mathbb{T}$ be a time scale. Define the bracket factorial by $$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll} 1&; n=0 \\ \displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &; n=1,2,\ldots \end{array} \right.,$$ where $[j]_{\mathbb{T}}$ denotes a bracket number.
Properties
Gamma function on certain time scales at bracket number equals bracket factorial