Difference between revisions of "Gamma function of x boxplus one"
From timescalewiki
(Created page with "==Theorem== If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then for all $x \in \mathbb{R}^+$, $$\Gamma_{\mathbb{T}}(x \boxplus_{\mu} 1;s) = \dfrac{x}{s} \Gamma_...") |
|||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then for all $x \in \mathbb{R}^+$, | If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then for all $x \in \mathbb{R}^+$, | ||
− | $$\Gamma_{\mathbb{T}}(x \boxplus_{\mu} 1;s) = \dfrac{x}{s} \Gamma_{\mathbb{T}}(x;s),$$ | + | $$\Gamma_{\mathbb{T}}\left(x \boxplus_{\mu} 1;s\right) = \dfrac{x}{s} \Gamma_{\mathbb{T}}(x;s),$$ |
where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]]. | where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]]. | ||
Revision as of 18:01, 15 January 2023
Theorem
If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then for all $x \in \mathbb{R}^+$, $$\Gamma_{\mathbb{T}}\left(x \boxplus_{\mu} 1;s\right) = \dfrac{x}{s} \Gamma_{\mathbb{T}}(x;s),$$ where $\Gamma_{\mathbb{T}}$ denotes the gamma function.