Difference between revisions of "Delta derivative of Mozyrska-Torres logarithm"

From timescalewiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. The following formula holds:
 
Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. The following formula holds:
$$L_{\mathbb{T}}^{\Delta}(t) = \dfrac{1}{t}.$$
+
$$L_{\mathbb{T}}^{\Delta}(t) = \dfrac{1}{t},$$
 +
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 +
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm|next=Mozyrska-Torres logarithm at 1}}
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 15:28, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. The following formula holds: $$L_{\mathbb{T}}^{\Delta}(t) = \dfrac{1}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)