Difference between revisions of "Mozyrska-Torres logarithm at 1"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. The following formula holds: $$L_{\mathbb{T}}(1)=0,$$ where $...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. The following formula holds:
+
Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. Then $L_{\mathbb{T}}(1)=0$, where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].
$$L_{\mathbb{T}}(1)=0,$$
 
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].
 
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 +
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Delta derivative of Mozyrska-Torres logarithm|next=Mozyrska-Torres logarithm on the reals}}
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 15:28, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. Then $L_{\mathbb{T}}(1)=0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)