Difference between revisions of "Delta Minkowski inequality"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $a,b \in \mathbb{T}$ and $p>1$. For rd-continuous $f,g ...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | __NOTOC__ | |
− | + | ==Theorem== | |
+ | Let $a,b \in \mathbb{T}$ and $p>1$. For [[continuity | rd-continuous]] $f,g \colon [a,b] \cap \mathbb{T} \rightarrow \mathbb{R}$ we have | ||
$$\left( \displaystyle\int_a^b |(f+g)(t)|^p \Delta t \right)^{\frac{1}{p}} \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(t)|^p \Delta t\right)^{\frac{1}{p}}.$$ | $$\left( \displaystyle\int_a^b |(f+g)(t)|^p \Delta t \right)^{\frac{1}{p}} \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(t)|^p \Delta t\right)^{\frac{1}{p}}.$$ | ||
− | + | ||
− | + | ==Proof== | |
− | |||
− | |||
==References== | ==References== | ||
− | + | {{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=findme|next=findme}}: Theorem 3.3 | |
+ | |||
+ | {{:Delta inequalities footer}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:38, 15 September 2016
Theorem
Let $a,b \in \mathbb{T}$ and $p>1$. For rd-continuous $f,g \colon [a,b] \cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\left( \displaystyle\int_a^b |(f+g)(t)|^p \Delta t \right)^{\frac{1}{p}} \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(t)|^p \Delta t\right)^{\frac{1}{p}}.$$
Proof
References
Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 3.3
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |