Difference between revisions of "Delta Cauchy-Schwarz inequality"
From timescalewiki
(Created page with "==References== [http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey]") |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
+ | ==Theorem== | ||
+ | Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have | ||
+ | $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$ | ||
+ | |||
+ | ==Proof== | ||
+ | |||
==References== | ==References== | ||
− | + | {{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=findme|next=findme}}: Theorem 3.2 | |
+ | |||
+ | {{:Delta inequalities footer}} | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 00:36, 15 September 2016
Theorem
Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$
Proof
References
Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 3.2
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |