Difference between revisions of "Delta Hölder inequality"
From timescalewiki
Line 1: | Line 1: | ||
− | + | __NOTOC__ | |
− | + | ==Theorem== | |
+ | Let $a,b \in \mathbb{T}$. For [[continuity | rd-continuous]] $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have | ||
$$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ | $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ | ||
where $p>1$ and $q = \dfrac{p}{p-1}$. | where $p>1$ and $q = \dfrac{p}{p-1}$. | ||
− | + | ||
− | + | ==Proof== | |
− | |||
− | |||
==References== | ==References== | ||
+ | * {{PaperReference|Inequalities on Time Scales: A Survey|2001|Ravi Agarwal|author2 = Martin Bohner| author3 = Allan Peterson|prev=Minkowski's inequality for integrals|next=Sum rule for derivatives}}: $3.3.1$ | ||
+ | |||
[http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey] | [http://www.math.unl.edu/~apeterson1/pub/ineq.pdf R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey] | ||
{{:Delta inequalities footer}} | {{:Delta inequalities footer}} |
Revision as of 00:07, 15 September 2016
Theorem
Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ where $p>1$ and $q = \dfrac{p}{p-1}$.
Proof
References
- Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): $3.3.1$
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |