Gamma function on certain time scales at bracket number equals bracket factorial
From timescalewiki
(Redirected from Gamma function on integers at bracket number equals bracket factorial)
Theorem
If $\mathbb{T}$ is a time scale, $n \in \mathbb{Z}^+$, and $[k]_{\mathbb{T}}$ is constant on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$, then $$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}},$$ where $[k]_{\mathbb{T}}$ denotes a bracket number, $[n-1]_{\mathbb{T}}!$ denotes a bracket factorial, and $\Gamma$ denotes the gamma function.