# Difference between revisions of "Mozyrska-Torres logarithm at 1"

From timescalewiki

Line 5: | Line 5: | ||

==References== | ==References== | ||

− | {{PaperReference|The Natural Logarithm on Time Scales| | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Delta derivative of Mozyrska-Torres logarithm|next=Mozyrska-Torres logarithm on the reals}} |

[[Category:Theorem]] | [[Category:Theorem]] | ||

[[Category:Unproven]] | [[Category:Unproven]] |

## Latest revision as of 15:28, 21 October 2017

## Theorem

Let $\mathbb{T}$ be a time scale including $1$ and at least one other point $t$ such that $0< t < 1$. Then $L_{\mathbb{T}}(1)=0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

## Proof

## References

Dorota Mozyrska and Delfim F. M. Torres: *The Natural Logarithm on Time Scales* (2008)... (previous)... (next)