Difference between revisions of "Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $0 \in \mathbb{T}$, then the Marks-Gravagne-Davis Fourier transform obeys $$\mathscr{F}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \...")
(No difference)

Revision as of 16:08, 15 January 2023

Theorem

If $0 \in \mathbb{T}$, then the Marks-Gravagne-Davis Fourier transform obeys $$\mathscr{F}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \Delta t.$$

Proof

References