Difference between revisions of "Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $0 \in \mathbb{T}$, then the Marks-Gravagne-Davis Fourier transform obeys $$\mathscr{F}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
If $0 \in \mathbb{T}$, then the [[Marks-Gravagne-Davis Fourier transform]] obeys
 
If $0 \in \mathbb{T}$, then the [[Marks-Gravagne-Davis Fourier transform]] obeys
$$\mathscr{F}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \Delta t.$$
+
$$\mathscr{F}_{\mathbb{T}}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \Delta t.$$
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 
+
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Marks-Gravagne-Davis Fourier transform|next=}}: Section 3 (3.1)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 16:43, 15 January 2023

Theorem

If $0 \in \mathbb{T}$, then the Marks-Gravagne-Davis Fourier transform obeys $$\mathscr{F}_{\mathbb{T}}\{f\}(z;0) = \displaystyle\int_{-\infty}^{\infty} f(t)e^{-2i\pi zt} \Delta t.$$

Proof

References