Difference between revisions of "Gamma function on certain time scales at bracket number equals bracket factorial"

From timescalewiki
Jump to: navigation, search
 
Line 2: Line 2:
 
If $\mathbb{T}$ is a [[time scale]], $n \in \mathbb{Z}^+$, and $[k]_{\mathbb{T}}$ is constant on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$, then  
 
If $\mathbb{T}$ is a [[time scale]], $n \in \mathbb{Z}^+$, and $[k]_{\mathbb{T}}$ is constant on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$, then  
 
$$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}},$$
 
$$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}},$$
where $\Gamma$ denotes the [[gamma function]].
+
where $[k]_{\mathbb{T}}$ denotes a [[bracket number]], $[n-1]_{\mathbb{T}}!$ denotes a [[bracket factorial]], and $\Gamma$ denotes the [[gamma function]].
  
 
==Proof==
 
==Proof==

Latest revision as of 18:07, 15 January 2023

Theorem

If $\mathbb{T}$ is a time scale, $n \in \mathbb{Z}^+$, and $[k]_{\mathbb{T}}$ is constant on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$, then $$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}},$$ where $[k]_{\mathbb{T}}$ denotes a bracket number, $[n-1]_{\mathbb{T}}!$ denotes a bracket factorial, and $\Gamma$ denotes the gamma function.

Proof

References