Difference between revisions of "Diamond integral"

From timescalewiki
Jump to: navigation, search
(Created page with "=References= [http://www.emis.de/journals/BMMSS/pdf/acceptedpapers/2013-02-023-R1.pdf The Diamond Integral on Time Scales]")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
The $\Diamond$ integral was introduced to fix the issues with the [[Diamond alpha derivative | $\Diamond_{\alpha}$ integral]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\int_a^a f(t) \Diamond t=0.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\int_a^b f(t) \Diamond t= \int_a^c f(t) \Diamond t + \int_c^b f(t) \Diamond t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\int_a^b f(t) \Diamond t= -\int_b^a f(t) \Diamond t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Sum Rule):</strong> The following formula holds:
 +
$$\int_a^b (f+g)(t) \Diamond t= \int_a^b f(t) \Diamond t + \int_a^b g(t) \Diamond t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Constant Multiple):</strong> The following formula holds:
 +
$$\int_a^b \alpha f(t) \Diamond t= \alpha \int_a^b f(t) \Diamond t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Mean Value Theorem):</strong> Let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be bounded and $\Diamond$-integrable on $[a,b] \cap \mathbb{T}$, and let $g$ be nonnegative or nonpositive on $[a,b] \cap \mathbb{T}$. Let $m$ and $M$ be the infimum and supremum respectively of $f$. Then there exists a real number $K$ satisfying $m \leq K \leq M$ such that
 +
$$\displaystyle\int_a^b (fg)(t) \Diamond t = K \displaystyle\int_a^b g(t) \Diamond t.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 
=References=
 
=References=
[http://www.emis.de/journals/BMMSS/pdf/acceptedpapers/2013-02-023-R1.pdf The Diamond Integral on Time Scales]
+
[http://arxiv.org/pdf/1306.0988.pdf The Diamond Integral on Time Scales]

Latest revision as of 08:05, 10 March 2015

The $\Diamond$ integral was introduced to fix the issues with the $\Diamond_{\alpha}$ integral.

Properties

Theorem: The following formula holds: $$\int_a^a f(t) \Diamond t=0.$$

Proof:

Theorem: The following formula holds: $$\int_a^b f(t) \Diamond t= \int_a^c f(t) \Diamond t + \int_c^b f(t) \Diamond t.$$

Proof:

Theorem: The following formula holds: $$\int_a^b f(t) \Diamond t= -\int_b^a f(t) \Diamond t.$$

Proof:

Theorem (Sum Rule): The following formula holds: $$\int_a^b (f+g)(t) \Diamond t= \int_a^b f(t) \Diamond t + \int_a^b g(t) \Diamond t.$$

Proof:

Theorem (Constant Multiple): The following formula holds: $$\int_a^b \alpha f(t) \Diamond t= \alpha \int_a^b f(t) \Diamond t.$$

Proof:

Theorem (Mean Value Theorem): Let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be bounded and $\Diamond$-integrable on $[a,b] \cap \mathbb{T}$, and let $g$ be nonnegative or nonpositive on $[a,b] \cap \mathbb{T}$. Let $m$ and $M$ be the infimum and supremum respectively of $f$. Then there exists a real number $K$ satisfying $m \leq K \leq M$ such that $$\displaystyle\int_a^b (fg)(t) \Diamond t = K \displaystyle\int_a^b g(t) \Diamond t.$$

Proof:

References

The Diamond Integral on Time Scales