Difference between revisions of "Diamond alpha Minkowski's inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
If $\mathbb{T}$ is a [[time scale]], $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then  
 
If $\mathbb{T}$ is a [[time scale]], $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then  
$$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}.$$
+
$$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}},$$
<div class="mw-collapsible-content">
+
where $\displaystyle\int$ denotes the [[diamond alpha integral]].
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=References=
 
=References=
 
[http://arxiv.org/pdf/0712.1680.pdf]
 
[http://arxiv.org/pdf/0712.1680.pdf]

Revision as of 15:17, 21 January 2023

Theorem

If $\mathbb{T}$ is a time scale, $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then $$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}},$$ where $\displaystyle\int$ denotes the diamond alpha integral.

References

[1]