Difference between revisions of "Delta integral"

From timescalewiki
Jump to: navigation, search
(Cauchy definition of $\Delta$-integral)
(Riemann definition of $\Delta$-integral)
Line 15: Line 15:
is an antiderivative of $f$.
is an antiderivative of $f$.
==Riemann definition of $\Delta$-integral==
==Riemann $\Delta$-integral==
==Related definitions==
==Related definitions==

Revision as of 04:12, 25 May 2014

There are a few equivalent definitions of $\Delta$-integration.

Cauchy $\Delta$-integral

Let $\mathbb{T}$ be a time scale. We say that $f$ is regulated if its right-sided limits exist (i.e. are finite) at all right-dense points of $\mathbb{T}$ and its left-sided limits exist (i.e. are finite) at all left-dense points of $\mathbb{T}$. We say that $f$ is pre-differentiable with region of differentiation $D$ if $D \subset \mathbb{T}^{\kappa}$, $\mathbb{T}^{\kappa} \setminus D$ is countable with no right-scattered elements of $\mathbb{T}$, and $f$ is $\Delta$-differentiable at each $t \in D$. Now suppose that $f$ is regulated. It is known that there exists a function $F$ which is pre-differentiable with region of differentiation $D$ such that $F^{\Delta}(t)=f(t)$. We define the indefinite integral of a regulated function $f$ by $$\displaystyle\int f(t) \Delta t = F(t)+C$$ for an arbitrary constant $C$.

Now we define the definite integral, i.e. the Cauchy integral, by the formula $$\displaystyle\int_s^t f(\tau) \Delta \tau = F(t)-F(s)$$ for all $s,t \in \mathbb{T}$.

A function $F \colon \mathbb{T}\rightarrow \mathbb{R}$ is called an antiderivative of $f \colon \mathbb{T}\rightarrow \mathbb{R}$ if $F^{\Delta}(t)=f(t)$ for all $t \in \mathbb{T}^{\kappa}$. It is known that all rd-continuous functions possess an antiderivative, in particular if $t_0 \in \mathbb{T}$ then $F$ defined by $$F(t) = \displaystyle\int_{t_0}^t f(\tau) \Delta \tau$$ is an antiderivative of $f$.

Riemann $\Delta$-integral

Related definitions

If $a \in \mathbb{T}$, $\sup \mathbb{T}=\infty$, and $f$ is rd-continuous on $[a, \infty) \cap \mathbb{T}$ then we define the improper integral by $$\displaystyle\int_a^{\infty} f(t) \Delta t = \displaystyle\lim_{b \rightarrow \infty} \displaystyle\int_a^b f(t) \Delta t$$

Properties of $\Delta$-integrals

  • $\displaystyle\int_t^{\sigma(t)} f(\tau) \Delta \tau = \mu(t)f(t)$
  • $\displaystyle\int_a^b [f(t)+g(t)]\Delta t = \displaystyle\int_a^b f(t) \Delta t + \displaystyle\int_a^b g(t) \Delta t$
  • If $\alpha$ is constant with respect to $t$, then

$$\displaystyle\int_a^b (\alpha f)(t) \Delta t=\alpha \displaystyle\int_a^b f(t) \Delta t$$

  • $\displaystyle\int_a^b f(t) \Delta t = -\displaystyle\int_b^a f(t) \Delta t$
  • $\displaystyle\int_a^b f(t) \Delta t = \displaystyle\int_a^c f(t) \Delta t + \displaystyle\int_c^b f(t) \Delta t$
  • $\displaystyle\int_a^b f(\sigma(t))g^{\Delta}(t) \Delta t = (fg)(b) - (fg)(a) - \displaystyle\int_a^b f^{\Delta}(t)g(t) \Delta t$
  • $\displaystyle\int_a^b f(t) g^{\Delta}(t) \Delta t = (fg)(b) - (fg)(a) - \displaystyle\int_a^b f^{\Delta}(t) g(\sigma(t)) \Delta t$
  • $\displaystyle\int_a^a f(t) \Delta t = 0$
  • if $|f(t)| \leq g(t)$ on $[a,b)$ then

$$\left| \displaystyle\int_a^b f(t) \Delta t \right| \leq \displaystyle\int_a^b g(t) \Delta t$$

  • if $f(t) \geq 0$ for all $a \leq t < b$ then $\displaystyle\int_a^b f(t) \Delta t \geq 0$