# Difference between revisions of "Bohner logarithm"

From timescalewiki

Line 11: | Line 11: | ||

=References= | =References= | ||

− | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Euler-Cauchy logarithm}}: (3) | + | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Euler-Cauchy logarithm}}: $(3)$ |

## Revision as of 17:00, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$

# Properties

Bohner logarithm sub a product

# See also

Euler-Cauchy logarithm

Jackson logarithm

Mozyrska-Torres logarithm

# References

Martin Bohner: *The logarithm on time scales* (2005)... (previous): $(3)$