Difference between revisions of "Bilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
Line 2: Line 2:
 
$$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$
 
$$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$
 
This integral is clearly a generalization of the [[Laplace transform]].
 
This integral is clearly a generalization of the [[Laplace transform]].
 +
 +
=See also=
 +
[[Laplace transform]]<br />
  
 
=References=
 
=References=
 
*{{PaperReference|Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series|2009|John M. Davis|author2=Ian A. Gravagne|author3=Robert J. Marks II|prev=findme|next=findme}}: $(3.1)$
 
*{{PaperReference|Bilateral Laplace Transforms on Time Scales: Convergence, Convolution, and the Characterization of Stationary Stochastic Time Series|2009|John M. Davis|author2=Ian A. Gravagne|author3=Robert J. Marks II|prev=findme|next=findme}}: $(3.1)$
 
*{{PaperReference|Analysis of the bilateral Laplace transform on time scales with applications|2021|Tom Cuchta|author2=Svetlin Georgiev|prev=|next=}}: Section 1
 
*{{PaperReference|Analysis of the bilateral Laplace transform on time scales with applications|2021|Tom Cuchta|author2=Svetlin Georgiev|prev=|next=}}: Section 1

Revision as of 02:31, 16 January 2023

Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$F(z,s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t.$$ This integral is clearly a generalization of the Laplace transform.

See also

Laplace transform

References