Hilger pure imaginary
From timescalewiki
Let $h>0$ be fixed. The Hilger pure imaginary numbers, $\mathring{\iota} \omega$, where $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$ is defined by the formula $$\mathring{\iota} \omega = \dfrac{e^{2\pi i \omega}-1}{h},$$ where $i=\sqrt{-1}$.
Properties
Proposition: If $z \in \mathbb{C}_h$, the Hilger complex plane, then $\mathring{\iota} \mathrm{Im}_h(z) \in \mathbb{I}_h$, the Hilger circle.
Proof: █
Theorem: Let $h>0$ be fixed. If $-\dfrac{\pi}{h} < \omega \leq \dfrac{\pi}{h}$, then $$\left| \mathring{\iota} \omega \right|=\dfrac{4}{h^2} \sin^2 \left( \dfrac{\omega h}{2} \right).$$
Proof: █
Hilger real part oplus Hilger imaginary part equals z
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (previous): Definition 2.4
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (previous): $(2.3)$