Hilger real part oplus Hilger imaginary part equals z
From timescalewiki
Theorem: The following formula holds: $$z = \mathrm{Re}_h(z) \oplus \mathring{\iota} \mathrm{Im}_h(z),$$ where $\mathrm{Re}_h$ denotes the Hilger real part of $z$, $\mathrm{Im}_h$ denotes the Hilger imaginary part of $z$, and $\mathring{\iota}$ denotes the Hilger pure imaginary.
Proof: █