Delta Jensen inequality
From timescalewiki
Theorem: Let $a,b \in \mathbb{T}$ and $c,d \in \mathbb{R}$. Suppose $g \colon [a,b]\cap \mathbb{T} \rightarrow (c,d)$ is [continuity | rd-continuous] and $F \colon (c,d) \rightarrow \mathbb{R}$ is convex. Then $$F \left(\dfrac{\displaystyle\int_a^b g(t) \Delta t}{b-a}\right) \leq \dfrac{\displaystyle\int_a^b F(g(t))\Delta t}{b-a}.$$
Proof: █
References
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |