Nabla sinh

From timescalewiki
Revision as of 04:28, 6 March 2015 by Tom (talk | contribs) (Created page with "$$\widehat{\sinh}_p(t,s)=\dfrac{\hat{e}_{p}(t,s)+\hat{e}_{-p}(t,s)}{2}$$ =Properties= <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

$$\widehat{\sinh}_p(t,s)=\dfrac{\hat{e}_{p}(t,s)+\hat{e}_{-p}(t,s)}{2}$$

Properties

Theorem: If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a regressive function, then $\widehat{\cosh}_{\gamma}(\cdot,s)$ and $\widehat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation $$y^{\nabla \nabla}-\gamma^2 y=0.$$

Proof: proof goes here █

  1. $\widehat{\sinh}_p^{\nabla}(t,s)=p(t)\widehat{\cosh}_p(t,s)$
  2. $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\hat{e}_{\nu p^2}(t,s)$
  3. $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
  4. $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$

References

Nabla dynamic equations