Exponential functions
From timescalewiki
The classical exponential function $e^{x-s}$ is the unique solution to the initial value problem $$y'=y; y(s)=1.$$ The standard way to generalize this to time scales is called the $\Delta$-exponential function, which is the solution of $$y^{\Delta}=y;y(s)=1.$$ It generalizes the above equation in the sense that the classical derivative is replaced by the $\Delta$-derivative on some time scale. If instead of using the $\Delta$-derivative one uses the $\nabla$-derivative then the resulting exponential equation is $$y^{\nabla}=y;y(s)=1,$$ defining the $\nabla$-exponential functions.