Delta Jensen inequality

From timescalewiki
Revision as of 04:41, 6 September 2014 by Tom (talk | contribs) (Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $a,b \in \mathbb{T}$ and $c,d \in \mathbb{R}$. Suppose $g \colon [a,b]\c...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem: Let $a,b \in \mathbb{T}$ and $c,d \in \mathbb{R}$. Suppose $g \colon [a,b]\cap \mathbb{T} \rightarrow (c,d)$ is [continuity | rd-continuous] and $F \colon (c,d) \rightarrow \mathbb{R}$ is convex. Then $$F \left(\dfrac{\displaystyle\int_a^b g(t) \Delta t}{b-a}\right) \leq \dfrac{\displaystyle\int_a^b F(g(t))\Delta t}{b-a}.$$

Proof:

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey