Hilger imaginary part

From timescalewiki
Revision as of 15:29, 21 January 2023 by Tom (talk | contribs)
Jump to: navigation, search

Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).

Properties

Range of Hilger imaginary part
Limit of Hilger real and imag parts yields classical
Hilger real part oplus Hilger imaginary part equals z

References