timescalecalculus python library documentation
This is the documentation for the Python repository timescalecalculus.
Contents
The basics
After extracting the files (or cloning the repository), open a Python instance in its folder and type
>>> import timescalecalculus as tsc
Right now, a time scale in this library can consist of only a finite list of numbers. Fraction types are available.
Let $\mathbb{T}=\left\{0,\dfrac{1}{3},\dfrac{1}{2},\dfrac{7}{9},1,2,3,4,5,6,7 \right\}$.
>>> import timescalecalculus as tsc >>> from fractions import Fraction >>> ts=tsc.timescale([0,Fraction(1,3),Fraction(1,2),Fraction(7,9),1,2,3,4,5,6,7],'documentation example') >>> ts.name 'documentation example' >>> ts.ts [0, Fraction(1, 3), Fraction(1, 2), Fraction(7, 9), 1, 2, 3, 4, 5, 6, 7]
Forward jump and graininess
The forward jump $\sigma$ can be computed:
$\sigma(0)=\dfrac{1}{3}$
>>> sigma(0,ts) Fraction(1, 3)
$\sigma(4)=5$
>>> sigma(4,ts) 5
$\sigma(7)=7$
>>> sigma(7,ts) 7
The forward graininess $\mu$ can be computed:
$\mu \left( \dfrac{1}{3} \right)=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$
>>> mu(Fraction(1,3),ts) Fraction(1, 6)
Backward jump and graininess
The backward jump $\rho$ can be used:
$\rho(1)=\dfrac{7}{9}$
>>> rho(1,ts) Fraction(7, 9)
$\rho(3)=2$
>>> rho(3,ts) 2
$\rho(0)=0$
>>> rho(0,ts) 0
The backward graininess $\nu$ can be computed:
$\nu\left( \dfrac{7}{9} \right)=\dfrac{7}{9}-\dfrac{1}{2}=\dfrac{5}{18}$
>>> nu(Fraction(7,9),ts) Fraction(5, 18)
Delta-derivative
The delta derivative works as expected. The delta derivative of a constant is zero:
>>> dderivative(lambda x: 1,5,ts) 0
and obeying the delta derivative of squaring function, we see
>>> dderivative(lambda x: x*x,5,ts) 11
The delta exponential is supported. For example if $\mathbb{T}=\{1,2,3,4,5,6,7\}$ then $e_1(3,1)=(1+\mu(1))(1+\mu(2))=(2)(2)=4$ which is correctly computed:
>>> dexpf(lambda x: 1, 3, 1, ts) 4
Special functions
Delta exponential $e_p(t,s)$
On $\mathbb{T}=\{1,2,3,4,5\}$
Then the delta exponential $e_1(3,1)$ is given by $$e_1(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(1)=2^{2}=4$$
>>> ts=[1,2,3,4,5] >>> dexpf(3,1,ts) >>> dexpf(lambda x: 1,3,1,ts) 4
The function $e_2(3,1)$ is given by $$e_2(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(2)=3^2=9$$
>>> dexpf(lambda x: 2,3,1,ts) 9
The function $e_{\mathrm{id}}(3,1)$ (where $\mathrm{id}$ is the identity function on $\mathbb{T}$) is given by $$e_{\mathrm{id}}(3,1)=\displaystyle\prod_{k=1}^2 1+\mu(k)k=(1+(1)(1))(1+(1)(2))=6$$
>>> dexpf(lambda x: x,3,1,ts) 6
The function $e_{e_1(\cdot,1)}(3,1)$ is given by $$e_{e_1(\cdot,1)}(4,1)=\displaystyle\prod_{k=1}^3 1+\mu(k)e_1(k,1)=(1+(1)e_1(1,1))(1+(1)e_1(2,1))(1+(1)e_1(3,1))=(2)(3)(5)=30$$
>>> dexpf(lambda x: dexpf(lambda x: 1,x,1,ts),4,1,ts) 30
On $\mathbb{T}=\{2,3,5,7,11,13,17\}$
Let $p_k$ denote the $k$th prime number. Then
$e_1(5,2)=\displaystyle\prod_{k=1}^2 1+\mu(p_k)(1)=(1+(1)(1))(1+(2)(1))=6$
>>> ts=[2,3,5,7,11,13,17] >>> dexpf(lambda x: 1, 5,2,ts) 6
$e_1(11,2)=\displaystyle\prod_{k=1}^4 1+\mu(p_k)(1)=(1+(1)(1))(1+2(1))(1+2(1))(1+4(1))=90$
>>> dexpf(lambda x: 1,11,2,ts) 90
$e_{\mathrm{id}}(5,2)=\displaystyle\prod_{k=1}^2 1+\mu(p_k)p_k=(1+(1)(2))(1+2(3))=21$
>>> dexpf(lambda x: x,5,2,ts) 21