Mozyrska-Torres logarithm composed with forward jump
From timescalewiki
Revision as of 15:27, 21 October 2017 by Tom (talk | contribs) (Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. Then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-To...")
Theorem
Let $\mathbb{T}$ be a time scale. Then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm, $\sigma$ denotes the forward jump, and $\mu$ denotes the forward graininess.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)