Inequality for Hilger real part
From timescalewiki
Theorem
The following inequality holds for $z \in \mathbb{C}_h$: $$-\dfrac{1}{h} < \mathrm{Re}_h(z) < \infty,$$ where $\mathrm{Re}_h$ denotes the Hilger real part.
The following inequality holds for $z \in \mathbb{C}_h$: $$-\dfrac{1}{h} < \mathrm{Re}_h(z) < \infty,$$ where $\mathrm{Re}_h$ denotes the Hilger real part.