Pythagorean identity for alternate delta trigonometric functions
From timescalewiki
Theorem: Let $\mathbb{T}$ be a time scale. The following formula holds: $$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}(t,s;\mathbb{T})=1,$$ where $\mathrm{c}_{pq}$ denotes the alternative delta cosine and $\mathrm{s}_{pq}$ denotes the alternative delta sine.
Proof: █