Quantum q less than 1
From timescalewiki
Revision as of 04:49, 18 May 2014 by Tom (talk | contribs) (Created page with "Let $q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a time scale. {| class="wikitable" |+$\mathbb...")
Let $q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a time scale.
Generic element $t\in \mathbb{T}$: | For some $n \in \mathbb{Z}, t =q^n$ |
Jump operator: | $\sigma(t) = \dfrac{t}{q}$ |
Graininess operator: | $\begin{array}{ll} \mu(t) &= \dfrac{t}{q} - t \\ &= \dfrac{t}{q} (1-q) \end{array}$ |
$\Delta$-derivative: | $f^{\Delta}(t) = \dfrac{f(\frac{t}{q})-f(t)}{\frac{t}{q}(1-q)}$ |
$\Delta$-integral: | $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k-1} (1-q) f(q^k) \\ \end{array}$ |
Exponential function: | $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log( 1 + p(\tau) \mu(\tau) ) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \mu(q^k) \dfrac{1}{\mu(q^k)} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k-1}(1-q) \end{array}$ |