Delta gk
From timescalewiki
$g_k$ polynomials
$$g_0(t,s)=1$$ $$g_{n}(t,s) = \displaystyle\int_s^t g_{n-1}(\sigma(\tau),s) \Delta \tau$$
$\mathbb{T}=$ | $g_k(t,t_0)=$ |
$\mathbb{R}$ | $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$ |
$\mathbb{Z}$ | $g_k(t,t_0)= $ |
$h\mathbb{Z}$ | $g_k(t,t_0)=$ |
$\mathbb{Z}^2$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $g_k(t,t_0)=$ |
$\mathbb{H}$ | $g_k(t,t_0)=$ |