Reciprocal of delta exponential
From timescalewiki
Theorem: Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a regressive function. The following formula holds: $$\dfrac{1}{e_p(t,s)}=e_{\ominus p}(s,t),$$ where $e_p$ denotes the delta exponential and $\ominus p$ denotes circle minus.
Proof: █