Dilation of time scales

From timescalewiki
Revision as of 15:27, 21 January 2023 by Tom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let $\mathbb{T}_1$ and $\mathbb{T}_2$ be time scales. Their dilation, $\mathbb{T}_1 \oplus \mathbb{T}_2$, is a time scale defined by $$\mathbb{T}_1 \oplus \mathbb{T}_2=\{t_1+t_2 \colon t_1 \in \mathbb{T}_1, t_2 \in \mathbb{T}_2\}.$$

Examples

  • $\{0,1\} \oplus \{4,5,10\} = \{4,5,6,10,11\}$
  • $\{0,2\} \oplus [0,1] = [0,1] \cup [2,3]$
  • $2\mathbb{Z} \oplus \mathbb{Z}=\mathbb{Z}$

References

[1]