Relationship between delta derivative and nabla derivative

From timescalewiki
Revision as of 00:31, 23 August 2016 by Tom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is $\nabla$-differentiable on $\mathbb{T}_{\kappa}$ and $g^{\nabla}$ is ld continuous on $\mathbb{T}_{\kappa}$, then $f$ is $\Delta$-differentiable on $\mathbb{T}^{\kappa}$ and $$g^{\Delta}(t) = g^{\nabla}(\sigma(t)).$$

Proof

References