Delta cosh
From timescalewiki
$\mathbb{T}=$ | $\cosh_1(t,0)=$ |
$\mathbb{R}$ | $\cosh_1(t,0)=\cosh(t)$ |
$\mathbb{Z}$ | |
$h\mathbb{Z}$ | $\cosh_1(t,0)=\dfrac{1}{2}\left( (1-h)^{\frac{t}{h}} + (1+h)^{\frac{t}{h}} = \displaystyle\sum_{k=0}^{\infty} h_{2k}(t,0) \right)$ |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |