Delta Taylor's formula
From timescalewiki
Revision as of 17:16, 16 May 2015 by Tom (talk | contribs) (Tom moved page Taylor's formula to Delta Taylor's formula)
Let $\mathbb{T}$ be a time scale.
Theorem: Let $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ where $h_k$ denotes the $h_k$ polynomials.
Proof: █