Marks-Gravagne-Davis Fourier transform

From timescalewiki
Revision as of 16:12, 15 January 2023 by Tom (talk | contribs)
Jump to: navigation, search

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.

Properties

Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel

Examples

Time Scale $\Delta$-exponential Functions
$\mathbb{T}=$ $e_p(t,s)=$
$\mathbb{R}$ $\mathcal{F}\{f\}(z;s)=$
$\mathbb{Z}$ $\mathcal{F}\{f\}(z;s)=$

See also

Cuchta-Georgiev Fourier transform

References