Difference between revisions of "Dilation of time scales"
From timescalewiki
(Created page with "Let $\mathbb{T}_1$ and $\mathbb{T}_2$ be time scales. Their dilation, $\mathbb{T}_1 \oplus \mathbb{T}_2$, is a time scale defined by $$\mathbb{T}_1 \oplus \mat...") |
|||
Line 1: | Line 1: | ||
Let $\mathbb{T}_1$ and $\mathbb{T}_2$ be [[time scale|time scales]]. Their dilation, $\mathbb{T}_1 \oplus \mathbb{T}_2$, is a time scale defined by | Let $\mathbb{T}_1$ and $\mathbb{T}_2$ be [[time scale|time scales]]. Their dilation, $\mathbb{T}_1 \oplus \mathbb{T}_2$, is a time scale defined by | ||
$$\mathbb{T}_1 \oplus \mathbb{T}_2=\{t_1+t_2 \colon t_1 \in \mathbb{T}_1, t_2 \in \mathbb{T}_2\}.$$ | $$\mathbb{T}_1 \oplus \mathbb{T}_2=\{t_1+t_2 \colon t_1 \in \mathbb{T}_1, t_2 \in \mathbb{T}_2\}.$$ | ||
+ | |||
+ | =Examples= | ||
+ | *$\{0,1\} \oplus \{4,5,10\} = \{4,5,6,10,11\}$ | ||
+ | *$\{0,2\} \oplus [0,1] = [0,1] \cup [2,3]$ | ||
+ | *$2\mathbb{Z} \oplus \mathbb{Z}=\mathbb{Z}$ | ||
=References= | =References= | ||
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] | [http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf] |
Revision as of 19:15, 29 December 2015
Let $\mathbb{T}_1$ and $\mathbb{T}_2$ be time scales. Their dilation, $\mathbb{T}_1 \oplus \mathbb{T}_2$, is a time scale defined by $$\mathbb{T}_1 \oplus \mathbb{T}_2=\{t_1+t_2 \colon t_1 \in \mathbb{T}_1, t_2 \in \mathbb{T}_2\}.$$
Examples
- $\{0,1\} \oplus \{4,5,10\} = \{4,5,6,10,11\}$
- $\{0,2\} \oplus [0,1] = [0,1] \cup [2,3]$
- $2\mathbb{Z} \oplus \mathbb{Z}=\mathbb{Z}$